Dynamic Chropractic

CHIROPRACTIC (GENERAL)

Putting Research Into Perspective: Thinking About Confidence Limits

Keith Charlton, DC, MPhil, MPainMed

When thinking about prevalences or treatment success rates, does $3 / 10$ equal a 30 percent prevalence or success rate? The answer, surprisingly, is no. The fraction $3 / 10$ is a proportion and reflects harvesting of data from which one might be tempted to claim a 30 percent success rate. In fact, this is a proportion, the sizes of which may change with another clinician or in another circumstance.

If we were able to check every human being on the planet and still came up with a 30 percent rate, it would represent a true proportion, but since we cannot, we must accept a sample that may vary from one sample-taking to another. Sampling "error" is what happens when we happen (randomly) to get $3 / 10$ on Monday and $5 / 10$ on Tuesday. Which is right and how confident can we be that any answer is representative of the true success rate?

A Formula
We need a formula that will allow us to say we are 95 percent confident that the real proportion lies somewhere within A and B, the upper limit and lower limit of the values observed.

The formula to use is:

$$
\mathrm{p}^{*}=\mathrm{p}+/-1.96 \sqrt{\frac{p(1-p)}{n}}
$$

In the above formula, " p " is the observed proportion, " n " is the number of subjects, 1.96 is a coefficient that generates a 95 percent probability and " $\mathrm{p} *$ " is the range within which there is a 95 percent chance the true proportion actually lies.

Let's look at our $3 / 10$ rate using this formula:

- $\mathrm{p}=3 / 10=0.3$
- $(1-p)=(1.0-0.3)=0.7$
- $\mathrm{n}=10$

Thus:

- $\mathrm{p}^{*}=0.3+/-1.96 \sqrt{\frac{(0.3)(0.7)}{10}}$
- $=0.3+/-0.28$
- $=0.02$ to 0.58

Interpretation

In sampling 10 subjects and finding an index condition in three, the prevalence of that condition is not necessarily 30 percent. It may be as low as 2 percent or as high as 58 percent! How can we improve our utility? Look at "n." The bigger n becomes, the tighter the confidence limits. That is why we usually need reasonably large numbers to reassure ourselves our estimates are realistic.

Another Use
Could a new treatment be placebo? Consider an investigator who audits a new (or old) treatment that has an apparent success rate of $8 / 10$. Is this useful - or could it just be placebo? Let's compute the confidence intervals! If we do, we find that the confidence interval for $8 / 10$, where " n " is 10 , is 55 percent to 100 percent.

On the face of it, this looks OK, but recall that we have already calculated the CI for 3/10 (the rate conventionally accepted as the rate of placebo response in pain conditions): 2 percent to 58 percent. Note the two ranges overlap, so 8/10 may just be placebo!

Thanks again for thinkin' with me!

Resources

- Armitage P, Berry G. Statistical Methods in Medical Research, 3rd Edition. Oxford: Blackwell, 1994: pp. 93-125.
- Sackett DL, Haynes RB, Guyatt GH, Tugwell P. Clinical Epidemiology. A Basic Science for Clinical Medicine, 2nd Edition. Boston: Little, Brown. 1991: pp. 175-6.
- Bogduk N. Truth in musculoskeletal medicine: I. Confidence intervals. Aust Musculoskel Med, 1997 Nov:13-16.

Editor's Note: This is the third in a short series of articles by Dr. Charlton focused on different aspects of research as applicable to clinical practice. "Mechanism vs. Outcome: Thinking About the Gap Between Research and Clinical Practice" ran in the Sept. 1 issue; "Thinking About Cohen's Kappa" appeared in the Oct. 1 issue.

