

VITAMINS / SUPPLEMENTS

Vitamin D Absorption, Part 2

G. Douglas Andersen, DC, DACBSP, CCN

Editor's note: Part 1 of this article appeared in the Dec. 16, 2009 issue.

In recent years, research has indicated that vitamin D₃ appears to have greater bioavailability than

vitamin D_2 . However, a recent study calls this into question.¹ Sixty-eight subjects with vitamin D deficiency were divided into four random, double-blind groups and studied over an 11-week period. One group was assigned a placebo, the second group took 1,000 IU of vitamin D_3 daily, the third group got 1,000 IU of vitamin D_2 daily, and the fourth group received a mixture of 500 IU of D_2 and 500 IU of D_3 every day. For the results of the study, please see Table 1. For how 25-hydroxyvitamin D [25(OH)D] is measured, see Table 2.

Treatment	Amount of D ₃	Number ofSubjects	Baseline25(OH)D	Final25(OH)D	Increase(ng/ml)
Placebo	N/A	14	18.6	18.8	0.2
Vitamin D ₂	1,000	16	16.9	26.8	9.9
Vitamin D ₃	1,000	20	19.6	28.9	9.3
D ₂ plus D ₃	500 + 500	18	20.2	28.4	8.2

Table 1: Vitamin D₂Versus Vitamin D₃ (nanograms per milliliter)

In this study, vitamin D_2 and vitamin D_3 equally raised serum 25(OH)D levels. Furthermore, the combination of both forms of vitamin D also showed no statistical difference. The most important aspect of this study to me was the fact that after 11 weeks of 1,000 IU daily, none of the groups reached the normal serum range of 30 ng/ml. In fact, the peak serum 25(OH)D concentrations were achieved after approximately six weeks and then leveled out for the remaining five weeks. One thousand IU/day of any form of vitamin D was not enough to raise 25(OH)D to low-normal levels, even though the dose was 2.5 times more than the RDA (400 IU).

Table 2: 25(OH)D Laboratory Measurements

Measurement	Abbreviation	Conversion	Normal Range	Low	Deficient
Nanograms/milliliter	ng/ml	x 2.5 = nmol/L	30-74 ng/ml	<30	<20
Nanomoles/liter	nmol/L	x 0.4 = ng/ml	75-85 nmol/L	<75	<50

In the meantime, studies like this show that more evidence is needed before a blanket recommendation can be made that D_2 is clearly inferior to D_3 . Since most supplements use D_3 already, the primary concern of patients and providers should be the amount rather than the form. When a patient recently asked me, "Is it better for me to take 400 D_3 instead of the 400 D_2 I use

now," I replied, "Instead of buying more, just take more of what you already have."

Reference

1. Holick MF, Biancuzzo RM, Chen TC, et al. Vitamin D_2 is as effective as vitamin D_3 in maintaining circulating concentrations of 25-hydroxy vitamin D. J Clin Endocrinol Metab, 2008;93:677-81.

JANUARY 2010

 $\ensuremath{\mathbb{C}}$ 2024 Dynanamic Chiropractic $\ensuremath{^{\mbox{\tiny M}}}$ All Rights Reserved